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ABSTRACT
This study develops a method for analytically propagating a covariance matrix

to a maneuver condition to be used in linear covariance analysis for planning the
rendezvous phase of a space mission. With the generalized formulation of a
condition transition matrix, an analytic method of propagating an augmented
covariance matrix to any scalar terminal maneuver condition is presented. The
twenty-six dimensional augmented covariance matrix used in this study includes
navigation state errors, state dispersions, and time errors for both the chaser and
target craft.

The method is, first, analytically developed. The vehicles are brought to the
desired rendezvous condition by linearizing the motion at the maneuver condition
point and allowing the time of flight to vary slightly. The analytic propagation
technique is then validated by comparison to a stochastic Monte Carlo simulation
for the case of several elevation angle conditions which might be used to trigger an
initial rendezvous intercept burn. The validity of linearizing the motion about the
terminal point is substantiated with the same simulation.
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CHAPTER 1

INTRODUCTION

The purpose of this study is to develop an analytic method for propagating

a covariance matrix to a maneuver condition to be used in linear covariance analysis

for planning the rendezvous phase of a space mission. Rendezvous performance

analysis usually includes the use of linear covariance and deterministic simulation

techniques. Most rendezvous profiles include maneuvers to conditions (eg.: the

position of the chaser craft relative to the target), as well as the more standard

maneuvers to a fixed time. This study presents an analytic method of propagating

the covariance matrix to a condition other than time.

This chapter motivates and introduces the subject: Section 1.1 provides the

motivation for developing the method, Section 1.2 details a brief background of the

current approach to propagating to an elevation angle condition, Section 1.3

discusses previous work that forms a starting point for this study, and Section 1.4

overviews the remaining chapters.
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1.1 Motivation

Future missions to Mars will stretch current theories and practices in mission

planning and operations well beyond those used to go to the moon. Several factors

serve to greatly complicate the problem. Probably the greatest complicating factor

is the distance involved. Because of the distance, most operations in the vicinity of

Mars will need to be autonomous. Recent mission architectures, whether manned

or robotic, have pointed to a need for an elliptic rendezvous capability. Great fuel

savings can be gained by leaving the heavy interplanetary ship in a high energy

elliptic orbit. The cost of taking only the landing craft down to a lower orbit and/or

the surface, and then lifting it back to the high energy orbit would be much smaller

than the cost of putting the interplanetary ship in a low circular orbit. This mission

scenario, coupled with the remoteness of Mars, leads to a more complicated

rendezvous problem than the near circular rendezvous typical of Apollo and current

Space Shuttle operations.

Some of the questions that need to be re-addressed in an elliptic rendezvous

problem are [3]:

* the shape and size of the catch-up orbit,

* where in the orbit the rendezvous should be initiated,

" the condition on which to trigger the intercept burn,

* where in the orbit the rendezvous should occur,

* the geometry of the final approach to the target, and

* whether the rendezvous scheme can be made tolerant of navigation

u nccrtainties.

18



All these questions are interrelated, and, clearly, some trade-offs will have t(, be

made. Near circular rendezvous experience provides a starting point, but

complications, like the orbital velocity vector no longer being aligned, essentially, in

the horizontal direction, may dictate different solutions than those currently used for

near circular orbits.

Because of the trade-offs involved, mission planning is an iterative process.

The analytic method set forth in this study was devised to simplify and increase the

accuracy of the search for answers to these questions during the mission planning

phase by providing an analytic method of propagating the covariance matrix to a

condition. While the method of propagating to a condition will be completely

general, this study will focus on observable conditions which might be used as the

trigger point for the intercept burn.

1.2 Background

Presently, the condition used to trigger the intercept burn for co-circular

rendezvous profiles and for reducing approach trajectory dispersions for shuttle

rendezvous operations is the elevation angle of the line of sight from the chaser to

the target craft, measured from the chaser's local horizontal. If the elevation angle

is held constant, then for all dispersed trajectories, state errors perpendicular to the

line of sight between the spacecraft will be zero at the condition. The current

method of propagating a covariance matrix to this condition uses an empirical

approach. The matrix is first extrapolated to the time at which the nominal orbit

meets the condition. It is, then, empirically 'shaped' so the covariance reflects the

zero error condition perpendicular to the line of sight and the resulting dispersions
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that exist at the condition as seen from deterministic simulations. Monte Carlo

simulation results confirm this method is essentially equivalent to extrapolating to

the condition. This study seeks to find an analytic method of extrapolation to the

condition by allowing for the possibility of time slips which are necessary to meet the

condition in the presence of errors.

1.3 Previous Work

Two previous studies were reviewed which deal with developing a transition

matrix which propagates an error vector to a condition rather than through a fixed

time of flight. This section briefly describes each one.

Shepperd develops a method for directly determining the six dimensional

transition matrix corresponding to any conic state extrapolation problem [6]. His

method assumes a general form for the variation of the conic constraint equation

with three unknown functional coefficients. He then derives the state transition

matrix in terms of these three unknown functions, which are different for each conic

problem. His structure is formulated in terms of Goodyear's universal variables.

After presenting a completely general method for computing the state transition

matrix for an arbitrary conic extrapolation problem, he demonstrates the derivation

of the three functions for the most commonly encountered single craft constraints;

extrapolation through a fixed time, or through a central angle, and extrapolation to

a terminal radius. The advantage of this method is that, in general, Kepler's

equation need not be solved, nor is it necessary to determine the time transition

matrix.

Tempelman takes a different approach, starting with the six dimensional time

20



transition matrix and then allowing the time of flight to vary [10]. By assuming

linear motion at the terminal point, the vehicle is constrained to either a traverse or

a terminal cutoff condition with small variations in the final time. An associated

time partial which defines the change in the time of flight is developed for each

condition. Tempelman's method is also completely general, making use of sensitivity

vectors, which are the partial derivatives of the desired cutoff condition with respect

to the final and initial state vectors. He, too, demonstrates the derivation of the

sensitivity vectors for several common single craft traverse and terminal constraints.

Tempelman's approach is the starting point for this study because of its inherent

simplicity and versatility in handling a multitude of problems. The development of

Section 2.3.1 parallels his work in ref. [10].

1.4 Thesis Overview

This study develops a generalized condition transition matrix for a different

class of constraints; maneuver conditions concerned with the relative position of a

chaser and target spacecraft during rendezvous.

Chapter 2 presents the analytic development. First, the time transition matrix

is augmented in three ways:

" Time is added to the state, so that the time partial is incorporated into

the final condition transition matrix.

* The state is expanded to include both the chaser and target vehicles.

" The perturbation state is further expanded to included navigation errors

and guidance dispersions.

The augmented condition transition matrix is then derived with the help of the

21



sensitivity vector. Finally, the derivation of the sensitivity vector is demonstrated for

several elevation angle conditions.

A simulation is presented in Chapter 3, which compares the analytic results

to a stochastic Monte Carlo simulation. The simulation was written to validate the

analytic development and to gain some insight into the size of perturbations that can

be introduced without exceeding the region of linearity at the terminal point. The

key components of the simulation (the error generator, Monte Carlo, and the

Analytic routine) are described in some detail.

Chapter 4 presents the results of the simulation. Key findings are made to

support the validity of the analytic development and the linearity assumption. Two

coordinate transformations are used to show the effect of the linearity assumption

on the final perturbations and to help 'see' what the constrained perturbations 'look'

like at the maneuver condition.

Conclusions drawn from the results of the simulation are summarized in

Chapter 5. Lessons learned from this study are presented, and topics for future

research are mentioned.
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CHAPTER 2

ANALYTIC DEVELOPMENT

For certain rendezvous mission architectures, when the primary goal is to

bring two spacecraft together, the actual time that certain events or conditions occur

takes on less importance than the fact that they do occur at some point in the

relative trajectory. In this case, the time of flight of a perturbed trajectory is allowed

to vary from the nominal to ensure that the condition is still met in the presence of

errors. While several different conditions may be utilized during the course of a

rendezvous, the primary condition of interest in this study is the elevation angle of

the line of sight to the target with respect to either the chaser's local horizontal or

its velocity vector. This provides a unique scalar condition to be met at the terminal

condition point.

This chapter takes these conditions and develops an analytic method of

propagating a covariance matrix to satisfy any such condition. Section 2.1 shows

how the covariance matrix is propagated, Section 2.2 defines the individual members

of the state, and Section 2.3 develops the condition transition matrix.
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2 1 Propagating to a Condiion

Ilie normal method of covariance matrix propagation uses the time transition

matrix, T'" Just as this transition matiix takes an error vector through a fixed time

of flight, it can be used to propagate the covariance matrix through the same fixed

time of flight:

TEd (2.1)

where E is the covariance matrix and the subscripts i and f designate the initial and

final points on the nominal trajectory.

The same idea works for propagating to some other scalar condition. if we

can find a time varying condition transition nma-trix, D c,1 which takes an error vector

to a given condition while allowing the time of flight to vary, the same pre- and

post-multiplication will propagate the initial covariance matrix to this condition:

E = (c E 4r (2.2)

Deriving a method to find this condition transition matrix is the primary goal of this

chapter.

2.2 Defining the State and the Time Transition Matrix

Before we can find a condition transition matrix, we must, first, define the

elements of the state vector we wish to propagate. This x ill also lead to the
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appropriate time transition matrix, another necessary ingredient. The starting point

is the traditional six dimensional state of one craft including three components of

position and three of velocity. The errors in this state are then defined as:

8x = [br , 8v].

2.2.1 Adding Time to the State

Because we are going to allow time to slip to meet the terminal ,ondition,

we need to keep track of this slip. The easiest way to do this is to add time to the

state. This time 'error' will be defined as the difference between the time the

perturbed state achieves the condition, and the time the nominal state achieves the

condition. In most cases, the initial time error will be zero, but it is conceivable to

have an initial error resulting from a prior time slip or simply a small difference

between the actual and nominal state update times.

For a first look, the equation for propagating errors with the six dimensional

time transition matrix is used, assuming a constant time of flight. The equation for

propagating the six dimensional state and a simple equation for time can then be

combined to define a larger state and time transition matrix.

8X, = X , xD r 0,6 x 1 (2.3 )
8tf = 8t8,, o, 6 8,

where 06 is a six dimensional null vector. Notice that any initial time error is just

passed through to the final state. In this case, because the time of flight is kept

constant, there is no change in the time error and this error has no effect on the rest

of the state.
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Taking this formulation one step further, a small time slip, 8t,*, is introduced

by linearizing the motion at the terminal point.

itf = ti + 6t t rf I 8t

where i is the first derivative of the nominal state (referred to as the dynamical

state by Tempelman). For conic motion, i = [v , a], the craft's velocity and

acceleration vectors, with a = -Itr/r 3 . The time slip is arbitrary for the moment,

but will provide the degree of freedom needed to satisfy some, as yet unspecified,

scalar constraint condition.

However, for rendezvous, two state vectors must be considered.

Furthermore, not only would we like to have the two craft get together or at least

arrive at a specified relative condition, but we need this event to occur at the same

time for both craft. That means the final time error for the chaser must equal the

final time error for the target. Since the two craft could have different initial time

errors, we need some way to ensure they end up at the condition with the same

clock time. While we could plan on having a different time slip for each craft to

account for any initial time differences, an easier and more straight-forward solution

is to convert initial time errors into initial position and velocity errors. Then,

because this initial time error is 'absorbed' by the rest of the initial state, it makes

no contribution to the final time error. As a result, an equal time slip for both craft

to meet the terminal condition requirement will give us equal final time errors, as

required.

In ref. [91, Tempelman shows how this might be done. The basic idea is that
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since the time slip is arbitrary at this point, no generality is lost if a bias is

introduced. Thus, defining:

8tl = at,- ati (2.5)

where St, is a new time slip and 31i is the bias. Introducing this change of variables

into equation (2.4) yields:

8Xf ~ ~ ~ ~ ~ ~ ~~i = ai+i 8,-a ) Xl=0T-el8x fa (2.6)
bt/ = 8t, + (8 t, - 8 ti) = 6t, [ / 06 0 t j I

This result is basically the same as equation (2.4) except that this initial time slip

error has been absorbed into the state vector part of the extrapolation. Instead of

propagating the initial state errors a fixed time of flight and leaving them at a

perturbed time, the errors are propagated by the same time of flight and then

'flown' back to the nominal time. Then, in both cases, they are propagated to

whatever time slip is required to meet the terminal condition. Because the final

time error is equal to the time slip, both craft will be on the same clock.

Note the seven dimensional time transition matrix is now singular, which only

means we cannot go backward in time and separate the initial time error from the

initial position and velocity errors. They are joined for good. Fortunately, this is

not a problem.

2.2.2 Two Vehicles

At this point, we are confronted with the task of rendezvousing two

spacecraft, each with its own uncertain state, modeled as a nominal state and a
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covariance matrix. Much of current literature simplifies the problem by either

assuming perfect knowledge of the target, or grouping the uncertainty of both craft

into the chaser's covariance matrix. The time slip is then propagated along a

relative trajectory which is the difference between the dynamical states of the chaser

and ' target (i, = ", - i.). In either case, the effect is the replacement of two

-.d state vectors by the single relative state vector which leads to suboptimal

performance.

In the Mars environment, with errors likely to be larger, this approximation

may not be acceptable. We, therefore, keep all the information available by

augmenting the state to include both vehicles.

8x~f = T 8x, - i 8t,, + i 8t

8x If = D 8 X, - I t t i + I t

5tc = 8t= 8t,

T, 0.6 --x 06 (2.7)
6xtt C kr6  , O6 -i8XA 8X (: 'A (D 06. 0, 0 I0

1 A T~ 0 0

TT
N~ O 0 0

8 A, A 8 A, A

where the subscripts c and I designate chaser and target, and A designates the

augmented states and time transition matrix. Note that the basic equation is
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unchanged.

2.2.3 Errors and Dispersions

Covariance analysis often involves the use of two basic types of perturbations.

Navigation errors, or just errors, are the difference between the navigation, or

estimated, state and the actual state of the vehicle. These errors develop from

imperfect navigation measurements which are used by a Kalman filtering system to

estimate position and velocity. When formulated as a covariance matrix, they

represent the uncertainty of the navigation estimate. Dispersions, on the other

hand, are the difference between the vehicle's actual state and the nominal, or

planned, state. They are the result of imperfect maneuver execution and the use of

linearized guidance laws or imperfect gravity models during a mission. As the

vehicle tries to proceed along its nominal trajectory, small errors in the time of

execution of a maneuver or the direction or duration of a burn cause the vehicle to

deviate from the nominal trajectory. In a covariance matrix formulation, the

dispersions represent the space about a point on the nominal trajectory where the

vehicle should actually be. The estimated (navigation) dispersion from nominal is

the sum of the state error and the actual dispersion.

X1, = Xxo. + ax

X,. =X + 8x + e (2.8)
= x Uo. +
= Xb.M + e

where x is the six dimensional state of position and velocity with subscripts

designating the nominal, true, and navigation states, 8x is now the dispersion, e is
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Figure 2.1 Perturbed Position Vectors
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the error, and Ui is the estimated dispersion from nominal. Figure 2.1 illustrates

the relationship for the position vector. Notice that dispersions affect both the

navigation and true state, while errors affect only the navigation state. Because

errors and dispersions are small perturbations about the nominal, they are both

propagated with the same time transition matrix, 0.,

A time slip, or initial time error, is converted to a dispersion, as developed

in Section 2.2.1. A navigation time error is conceivable, though; in ref. [1], Battin

develops a procedure for tracking clock inaccuracies by including time in the state.

Also, if a spacecraft's clock differed from the ground, the time tag associated with

a ground update would introduce further navigation errors. However, the accuracy

of today's clocks makes thcse errors small enough to ignore. This study will assume

perfect clocks and, therefore, end up with a 26 dimensional perturbation state: state

errors, state dispersions, and time for each of the chaser and target vehicles.

Table 2.1 summarizes the elements of the perturbation state.

In constructing the final augmented system, it is important to remember that

the time slip affects dispersions only, and not errors (at least, to first order).

Therefore, the dynamical state components associated with the navigation error in

the augmented dynamical state and time transition matrix are zero. Equation (2.9),

on page 33, shows the final linearized model of conic motion for propagating the

errors and dispersions of two space craft to a nominal final time plus an equal time

slip for both craft. The linearized, variable time of flight model of conic motion,

developed here, will be the starting point for the calculation of the condition

transition matrix in Section 2.3.
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Table 2.1 Twenty-Six Dimensional Perturbation State Definition

I Perturbation Type Symbol Description

Navigation Errors e, 3r, Chaser position (three components)

av, Chaser velocity (three components)

e,  3r, Target position (three components)

_v Target velocity (three components)

Dispersions 3x, 8 r, Chaser position (three components)

8V, Chaser velocity (three components)

Sx, 3r, Target position (three components)

,vI Target velocity (three components)

St, Chaser time

st, Target time
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2.3 The Condition Transition Matrix

As stated previously, the condition transition matrix differs from the time

transition matrix in that the time of flight is not held constant. Instead, the flight

time is allowed to vary so that a scalar termination condition can be maintained in

the presence of perturbations. The methodology developed in this section is

completely general and can be used to calculate a transition matrix for any scalar

termination condition which can be defined by the state. This study focuses on a

line of sight elevation angle which can be used to trigger an initial rendezvous burn.

Also discussed previously, the major simplification which allows this

development is an assumption of linear motion at the terminal point. Because the

actual motion is not linear, we are limited to 'small' time slips. The Monte Carlo

simulation, developed in Chapter 3, will not only validate the analytic development,

but also determine the region of linearity, giving us a feel for what is 'small'.

2.3.1 Varying Time of Flight to meet a Scalar Condition

Any arbitrary scalar maneuver condition, E, that can be defined by the

terminal state, can be used to constrain a transition matrix by requiring the total

derivative of the condition to be zero.

8E = a 6xf = kr8xf = 0 (2.10)

where kT , the sensitivity, or constraint, vector, is the derivative of the desired
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condition with respect to the terminal state. It should be mentioned that

Tempelman allows for the possibility of a constraint condition involving both initial

and final state perturbations. These are his, so called, traverse conditions, and, as

a result, his equations are slightly more complicated. Traverse constraints can be

defined for single vehicle motion, but with two vehicle motion, as in the case of

rendezvous, they appear to have little meaning. For this reason, this study is

restricted to terminal constraint conditions, that is, constraints that are functions of

the terminal state only.

The final state is constrained by combining the linearized, variable time of

flight model of conic motion (from equation (2.4)),

6x! = 0 Taxi + if t, (2.11)

with equation (2.10), which relates the desired constraint to the required change in

flight time:

8 = kr8X = k T'DX4 + k Txift, = 0 (2.12)

Notice, from equation (2.12), the magnitude of kT is not important, only its

direction.

Equation (2.12) can now be solved for this time slip,

-StT4 T- (2.13)

k T -i

and inserted into equation (2.11):
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_ T ikT

ITT
(D Taxi (2.14)

= Dc xi

which represents the constrained, linearized model of conic motion which terminates

on the desired condition. It is completely general for any state that fully defines the

desired terminal condition.

Using the augmented model developed in the previous section yields a

desired advantage. Because the time error is included in the augmented state, and,

fom equation (2.9), bt s = 5tf, equation (2.13) has not been lost. It has become a

part of equation (2.14).

Equation (2.14) shows that the condition transition matrix is related to the

time transition matrix by the dynamical state and the sensitivity vector.

if k (2.15)

I t T

Thus, the condition transition matrix is seen to be the product of two matrices: an

idempotent matrix, 0 , (an idempotent matrix is any matrix A, such that A2=A), and

the time transition matrix [101.
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The result in equation (2.14) can be rewritten to show that the final

constrained perturbation is the prcduct of the idempotent matrix and final

perturbation at the nominal terminal time.

8xC = ( T TrXi
(2.16)

= ,016x!

Because this matrix is idempotent, it can be interpreted as a 'shaping' matrix,

shaping the perturbations to allow the final state to conform to the required

condition. The idempotent property confirms that once a vector is shaped, any

attempt to shape it again with the same matrix will have no effect; it is already

constrained to the proper condition.

Combining equation (2.15) with equation (2.2) and then equation (2.1), yields

the desired propagation of the covariance matrix to a condition and shows how the

idempotent matrix 'shapes' a covariance matrix which has been propagated to a

nominal final time.

E c (D E (D
i C

(D (D E, (D~ T 4 (2.17)

2.3.2 Maneuver Conditions and the Sensitivity Vector

While the methodology developed is completely general and can be used to

calculate a transition nmatrix for any terminal maneuver condition, this study focuses
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on the elevation angle of the line of sight from the chaser craft to the target craft.

This elevation angle is an observable condition which might be used to trigger a

rendezvous burn. Four definitions for the elevation angle are developed. The first

is the elevation of the line of sight with respect to the local horizontal of the chaser

craft, and the second is the same angle with a correction if the target and chaser are

not co-planer. The last two elevation angles are definea relative to the chaser's

velocity vector. Figure 2.2 illustrates the elevation angles with no out of plane

correction.

When the elevation angle is defined with respect to the local horizontal of

the chaser craft, (P, it can be written as a function of the position vectors of the two

spacecraft,

ArT r, (2.18)

where Ar = r, - r, is the relative position vector. The corre, ion made in 02

removes the out of plane component of the relative position vctor, essentially

projecting the target's position onto the orbital plane of the chaser craft.

Ar - irh,)h r

sino 2  =, Ar - ±(rrh,)h, 'r j
rh, ) (2.19)ArT 
r,

jAr - 2(rT h,)h, I r, I
he

where h = r x v is the orbital angular nomentun vector. 0, is also, therefore, a

function of the chaser's velociiy vector unless the two craft are co-planar, in which
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case equation (2.19) simplifies to equation (2.18).

0k3 and 4, are defined similarly, but with respect to the chaser's velocity

vector:

ArT v (2.20)

IArl V, I

and

A r - . rt h ) h ! TvC

sin(N he_Ar - 2(rTh)hllV, I
he (2.21)

ArT v€

Ar - L(r.Th,)h, Ilv, 1
he

The sensitivity vector, which is the derivative of the desired condition with

respect to the final state, is a row vector containing the partial derivatives of the

condition with respect to each member of the state:

kA-
A f(2.22)

3 a e I ate IJ

where

a Aa 41] (2.23)

ae ax [ar01Vj
Any members of the state which are not a direct function of the condition have a
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zero partial derivative:

IV 03 (2.24)- - - o=0 r  2

for all elevation angles defined.

Deriving the remaining partials for each elevation angle is a straight-forward,

but messy exercise in differentiation. A few important steps and the results of the

differentiation are contained in Appendix A. Note the magnitude of the sensitivity

vector is not needed in calculating the condition transition matrix, so any scalar

values common to all partials can be neglected, if desired.
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CHAPTER 3

SIMULATION

A Monte Carlo simulation was written to validate the analytic development

of Chapter 2 and to gain some knowledge of the size of perturbations that can be

introduced without exceeding the region of linearity at the terminal point. This

chapter describes the implementation of this simulation. Section 3.1 gives an

overview of the main components of the simulation and describes two 'off the shelf'

procedures used. Section 3.2 shows how representative error vectors were generated

from a covariance matrix, detailing the statistical theory involved. The central

procedure that propagated all the perturbed states to the condition and calculated

the statistics is the subject of Section 3.3, and finally, the implementation of the

analytic solution is discussed in Section 3.4.

3.1 Simulation Overview

The Monte Carlo simulation has six main components, as detailed in

Table 3.1 (Their hierarchy is shown in Figure 3.1). Simulation Setup, the initializer

and main executive, and two 'off the shelf procedures, Telev and Kepler, are

addressed in this section. The remaining components; the error generator, Monte
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Simulation
Setup

Initializer 2
and Executive

Error Monte A
Generator Carlo Analytic

Elevation
ngle Searchl Kepler

Figure 3.1 Hierarchy of Simulation Components
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Table 3.1 Major Components of Computer Simulation

Program Component Purpose

Simulation Setup Initializes simulation and acts as main
executive.

Elevation Angle Search Finds the time a desired elevation angle
condition will occur.

Kepler Propagates a spacecraft's state to a new time
and computes the time transition matrix.

Error Generator Generates a statistically representative set of
error vectors from an initial covariance matrix.

Monte Carlo Propagates the perturbed states to the
condition and calculates the stitistirs

Analytic Implements the analytic results of Chapter 2.

Carlo, and Analytic; are the subject of the following sections.

Inputs to the simulation are:

" Initial nominal state of the chaser in inertial frame.

* Initial nominal state of the target in inertial frame.

- -.itial nominal time.

" Desired elevation angle.

" First guess for nominal time to achieve elevation angle condition.

" Type of elevation angle (from the four definitions).

" Initial augmented covariance matrix containing error and dispersion

covariance data for the chaser and target.

" Covariance matrix scale factor.

Outputs are:

0 Final twenty-six dimensional inertial covariance matrix propagated to
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the desired condition by the Monte Carlo routine.

* Final twenty-six dimensional inertial covariance matrix propagated to

the desired condition by the Analytic routine.

" Three dimensional Monte Carlo estimated position dispersion

covariance matrix rotated to a relative line of sight frame.

* Three dimensional Analytic estimated position dispersion covariance

matrix rotated to a relative line of sight frame.

* Three dimensional Monte Carlo true position dispersion covariance

matrix rotated to a relative line of sight frame.

" Three dimensional Analytic true position dispersion covariance matrix

rotated to a relative line of sight frame.

One sigma errors are also calculated from the main diagonals of each matrix.

Simulation Setup initializes the simulation by solving the nominal rendezvous

problem. It calls Telev to find the nominal final time for the desired elevation angle

condition, and Kepler to propagate the chaser and target states to this nominal

condition (see Figure 3.2). It then acts as the executor, calling the error generator

to obtain the initial augmented error set and then Monte Carlo and Analytic to

generate the final condition covariance matrices.

to condition - X t

m Telev, Kepler m c

Figure 3.2 Propagating the Nominal State to an Elevation Angle Condition

Kepler is an 'off the shelf procedure written by Stan Shepperd which

propagates a position and velocity vector and computes a six dimensional time
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transition matrix for a given time of flight. The procedure solves Kepler's problem

and calculates the transition matrix using Goodyear's universal variables. Further

information on the Kepler procedure can be found in ref. [7].

The elevation angle search component is also an 'off the shelf procedure

called Telev and taken from the space shuttle's on orbit software. It uses an

iterative routine to find the time a desired elevation angle condition will occur and

has been adapted to use the elevation angles defined in eqs. (2.18) through (2.21).

It was set to use two body orbital mechanics. Further information on Telev can be

found in ref. [5].

3.2 Error Generator

A procedure was written to generate any number of error vectors which

accurately represent a given twenty-four dimensional covariance matrix (Initial time

errors were assumed to be zero, with both craft starting on the same clock). The

error generator takes advantage of the 'square root' covariance matrix devised by

Jim Potter, as cited by Battin [1].

The development takes three steps [2]:

" A vector, y, of independent, gaussian random numbers with unit

variance has covariance,

Eyy T = 1 (3.1)

where I is the iderntity matrix.

" The nxn symmetric, positive semidefinite covariance matrix, P,
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representing the expected value of the outer product of an n

dimensional error vector, e, with itself,

P = E[ee l = ee-  (3.2)

can be written as the product of a matrix, W, and its transpose:

p = WWT (3.3)

W is, therefore, a square root of P.

0 A vector,

x = Wy (3.4)

will have covariance,

E[xxfl = W(ELy T])WT = WWT = P (3.5)

The square root matrix, W, is not unique. One method of finding a square

root matrix is to use the eigenvectors and eigenvalues:

I i (3.6)
P = VAVT= VA 2AIVT = WWT(

where V is the matrix of unit eigenvectors (also called the modal matrix) and A is

the diagonal eigenvalue matrix.

One commonly used error generating method takes advantage of this fact

by interpreting the eigenvectors as 'directions' in n-space along which the

components of the error vectors are uncorrelated. The eigenvalues are the variances

of these components. The desired error vectors are then generated using the

following equation:
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x = r1 v, (3.7)
i- I

where r is an independent, gaussian random number with unit variance, and I, and

V, are the i' eigenvalue and eigenvector of P 141. Equation (3.7) can be seen to be

equivalent to:

t (3.8)
x = VAry = Wy(

Calculating the eigenvectors and eigenvalues of a twenty-four dimensional matrix is

a time consuming process, though. Fortunately, its also avoidable.

Because any square root matrix will do the trick, a much easier method

assumes a lower triangular form for W [1]. This assumption allows the desired

square root matrix to be determined by the straightforward solution of a series of

simultaneous algebraic equations. While there are a variety of ways of doing this,

the following easily programmed, recursive algorithm for an nxn positive

semidefinite matrix, P, was borrowed from Cholesky and Banachiewicz, as cited in

ref. [1]:

For i= 1, 2, ..., n, the elements of W are calculated from

i-I
W" =pa - E wi'

j-1

for j< 1 (3.9)

1  - EwjkWlJ forji+l,i+2,...,n
Wi i Pi k-1

where w and p are the elements of W and P.
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Because of the efficiency of this technique, it was also used to improve the

computer's gaussian pseudo-random number generator when generating 'small'

vector sets. After generating a set of independent, pseudo-random vectors, z, their

covariance was calculated to be close to I, but not exact (the diagonal elements

ranged from 0.92 to 1.07, and the off diagonal elements were as large as 0.08 for

1,001 twenty-four dimensional vectors). The computed covariance,

E[zzr] = zzT = B = UUT _ I (3.10)

where B is the near-identity covariance matrix, and U is its square root, was,

therefore, 'divided' out to produce a set of vectors that really had independent

elements with unit variance:

y = U-Iz (3.11)

EyyT] = U-1 (E[ZZ'fU-T =UBU- = I

The new random vectors, y, indeed, had a covariance equal to the identity (to at

least 15 figures). And the computed covariance of the resulting error vector set,

x = Wy, matched the desired covariance, P, just as well. This 'fix' was derived

independently, but was later found to be previously developed by Suddath in ref.

[8].

3.3 Monte Carlo

The Monte Carlo component was written to solve the rendezvous problem

for many randomly perturbed states obtained from the initial augmented covariance

matrix. The Monte Carlo component propagates the generated error vectors to the
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final condition, then re-calculates the statistics, forming the final condition

covariance matrix.

For each augmented error vector, Monte Carlo builds an initial, true and

navigation state from the initial nominal state, as defined in Chapter 2, for the

chaser and the target:

X = .r u . + a x 1
(3.12)

Xn,= t i + el

For each navigation state, it calls Telev to find the perturbed time for the desired

eleva:ion angle condition, and Kepler to propagate the estimated chaser and target

states to this perturbed condition. It then calls Kepler again to propagate the true

chaser and target states to the same perturbed time (see Figure 3.3).

X to condition X •
navi Telev, Kepler nrvc nave

to t
x rue " true

t Kepler C

Figure 3.3 Propagating the Perturbed State to an Elevation Angle Condition

The final chaser and target condition perturbations are then calculated from these

states by re-writing equation (3.12):
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8tc = t WC - t,,v c

V = X C - 1 UCm (3.13 )

8X C = XrC- XON c

ec = ai c  8XC

where the subscript, C, designates a state or perturbation propagated to the desired

elevation angle condition.

Finally, an augmented final condition perturbation vector, 6x,%, is built

as defined in Table 2 1. These augmented vectors are then used to calculate the

final condition covaria~lce matrix:

AT= &ra~xf (3.14)

3.4 Analytic Method

If the previous section seemed complex. it should serve to evoke an

appreciation for an analytic method of propagating a covariance matrix to a

maneuver condition. The simulation's Analytic component simply computed one

(twenty-six dimensional) condition transition matrix using the equations developed

in Chapter 2 and summarized here for clarity. As t'Aroughout this study, the six

dimensional time transition matrix is assumed to be known, and was generated by

Kepler.
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The first, and, perhaps, most difficult, step is to calculate the augmented

sensitivity vector, kA:

T
aX'Af 

(3.15)

c-e ' axe' 9 axt

where

_ _ c c (3.16)

ae x ar 01v

and

=0 c _Of (3.17)

The remaining partials are located in Appendix A.

The augmented dynamical state and time transition matrix are then

computed as follows:

06

06

If where i=[ and a=-p~r (3.18)
SI r
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e

Tr,

A T. (3.19)

, -

0

0

which provides all the pieces necessary to compute the condition transition matrix:

=[-XAfkA1

=. 4, A---/ ' (3.20)

Individual augmented perturbation vectors were then propagated for

comparison to Monte Carlo,

8xc = (Pc8Xj (3.21)

and the final condition covariance matrix was computed in one step:

E = IDc Ei ZT (3.22)

The format for the output covariance matrices is presented in Chapter 4.
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CHAPTER 4

RESULTS

Several test cases were used to validate the results of Chapter 2, investigate

the region of linearity at the terminal point, and get a feel for the geometry of the

perturbations at the desired condition. The results of these test cases are presented

in this chapter.

The problem setup, including the initial covariance matrix and the nominal,

initial and final vehicle states are presented in Section 4.1. Section 4.2 compares the

final condition covariance matrices generated by the Monte Carlo and Analytic

components of the simulation, verifying they agree. In Section 4.3, these matrices

are transformed into a curvilinear coordinate frame to bring out the effect of the

linearity assumption. Finally, in Section 4.4, an effort is made to visualize the

perturbations at a maneuver condition by, first, using a different coordinate

transformation to 'look' at the results in a relative, line of sight frame to see if the

errors collapse along the line of sight, and then by comparing the estimated

elevation angle error to the true elevation angle dispersion.
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direction geocentric radius
of motion vector of vehicle

w

V

vehicle
orbital plane

NAME: U, V, W coordinate system [5].

ORIGIN: Point of interest.

ORIENTATION: The U-V plane is the instantaneous orbit plane at epoch. The U
axis lies along the geocentric radius vector to the vehicle and is
positive radially outward.

The W axis lies along the instantaneous orbital angular
momentum vector at epoch, and is positive in the direction of the
angular momentum vector.

The V axis completes the right-handed orthogonal system.

CIIARAC:TLRISICS: Quasi-inertial, right-handed, Cartesian coordinate system. This
system is quasi-inertial in the sense that it is treated as an inertial
coordinate system, but it is redefined at each point of interest.

Figure 4.1 UVW Coordinate System
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4.1 Problem Setup

All test cases used the same initial covariance matrix. This covariance

matrix reflects the uncertainty that exists in the ground uplink of a shuttle and target

state during a shuttle rendezvous mission. The full six by six chaser and target

covariance matrices, listed in Table 4.1, are expressed in the UVW coordinate frame

(see Figure 4.1), and were rotated to the inertial frame for the initialization of each

test case. Four assumptions were made in forming the initial augmented covariance

matrix:

* Uncertainty in the errors and dispersions of each craft are equal.

* Correlations between chaser and target craft are zero.

* Correlations between errors and dispersions are zero.

* Initial time errors are zero.

The augmented covariance matrix was then multiplied by a scale factor to analyze

the effects of scaled perturbations on the results.

Two different rendezvous orbits were used. The first had the target craft in

a 200 NM altitude circular, equatorial orbit with the chaser ten miles below in a

co-circular, co-planar orbit. The nominal final condition point was planned to occur

with the chaser craft on the positive, inertial X axis. The second case had the target

in a 200 by 29400 mile elliptic, equatorial orbit (eccentricity = 0.8) with the chaser,

again, ten miles below in a co-elliptic, co-planar orbit. Periapsis coincided with the

positive, inertial X axis, and the nominal final condition point was planned to occur

with the chaser craft on the positive Y axis (true anomaly = 900). The initial

nominal state, as input to the simulation, and the final nominal state, as propagated

57



Table 4.1 Initial Covariance Matrices in UVW Frame

Chaser's Error and Dispersion Cov'ariance Matrix:
3.83 193E + 05 -5.60173E3+04 1.342681- +03 4.66259E3+02 -3.021181--+02 -7.65116E3-01

-5.60173E+04 2.35247E3+06 -4.990171-.+03 -2.1898213+03 -4.19257E3+01 9.478731> 01
1.34268E+03 -4.99017E+03 1.176161-+06 6.96687E+00 -2.15600E3+00 -4.0615713+r2
4.66259E+02 -2. 18982E+03 6.96687E3+00 2.57924E3+00 -2.96924E3-01 - 1.98502E3-03

-3.02118E+02 -4.19257E+01 -2.i56001--+00 - 2.96924E - 01 2.47009E3-01 1.22858E3-03
-7.65116E3-01 9.47873E3-01 - 4.0615 7E + 02 - 1.98502E3- 03 1.228581---03 3.81924 E -0 1

Target's Error and Dispersion Covariance Matrix:
1.35 124E+04 - 1.48492E +04 3.59579E3+02 2.4738713+01 - 1.55673E3+01 7.7650313-02

- 1.48492E3+04 9.08787E3+05 - 1.47445 E+04 - 1.07590E+03 1.32557E3+01 -5.09445E3+00
3.59579E+02 - 1.47445E3+04 1.06319E3+06 1 .86755E+01 -2.08800E3+00 5.6067013+02
2.47387E3+01 - 1.0759013+03 1.8675513+01 1.28142E3+00 -2.35343E-02 6.04941E3-03

- 1.556731E+01 1 .32557E+01 -2.08800E3+00 -2.35343E-02 1.82250E3-02 - 9.91980E - 04
7.76503E3-02 -5.09445E3+00 5.60670E3+02 6.04941E-03 -9.91980E3-04 4.4622413-01
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to the requested elevation angle by Simulation Setup, are listed in Table 4.2. The

format used in this table to print the fourteen dimensional state vector is as

follows:'

re rc7 rc, VIZ V V"

t , ]

The desired elevation angle for each case was varied according to the orbit

and the elevation type requested, so the nominal final points for all elevation types

would be the same.$ For the co-circular orbits, a desired angle of 25.08 degrees was

used. For the co-elliptic orbits, when the elevation was measured relative to the

chaser's local horizontal (elevation types 1 and 2), 51.820 was used; when the

elevation was measured relative to the chaser's velocity vector (types 3 and 4), 13.15'

was used.

4.2 Validating the Analytic Result

The analytic result of Chapter 2 was validated in three ways. The first way

used a separate simulation which propagated small deterministic dispersions with a

fourteen dimensional condition transition matrix (no navigation errors). The Kepler

procedure was then used to propagate the initial perturbed state to the same final

time determined by the analytic method. The final elevation angle of the perturbed

tThe units of mcasure used for all rcsults are: feet, feet per sc 'ond, seconds, and degrees, as

appropriate.

*Rcfcrcncc to elevation typc in the results is from the four elcva i on angle definitions of Section 2.3.2.
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Table 4.2 Nominal Simulation States

Initial Nominal State for Co-Circular Case:
-3.84059E+06 -2.17811E+07 0.00000 2.48447E+04 -4.38080E+03 0.00000
-3.56721E+06 -2.18891E+07 0.00000 2.48654E+04 -4.05225E+03 0.00000
-1.53011E+03 -1.53011E+03

Final Nominal State for Co-Circular Case:
2.21171E+07 2.95695E-08 0.00000 -4.72937E - 11 2.52280E+04 0.00000
2.21774E+07 1.29025E+05 0.00000 - 1.46569E+02 2.51930E+04 0.00000
0.00000 0.00000

Initial Nominal State for Co-Elliptic Case:
- 1.83697E+08 -3.40423E+07 0.00000 3.42607E+03 -3.440551-+03 0.00000
- 1.83700E+08 -3.43293E+07 0.00000 3.44948E+03 -3.43606E+03 0.00000
-2.31422E+04 -2.31422E+04

Final Nominal State for Co-Elliptic Case:
- 1.93715E-07 3.98168E+07 0.00000 - 1.88024E+04 1.50471 E+04 0.00000
-2.17846E+05 4.00938E+07 0.00000 - 1.87778E+04 1.49204E+04 0.00000

0.00000 0.00000
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states, as produced by the analytic method and Kepler, were compared to the

desired elevation angle. The results of this comparison, for several simple

dispersions, are presented in Table 4.3. The analytic method is, indeed, finding the

correct time slip and is propagating the dispersions to the desired condition.

The remaining methods of validation used the simulation described in

Chapter 3. The first of these was a direct comparison of the augmented condition

covariance matrices produced by the Analytic and Monte Carlo components. In the

interest of conciseness, only the 'one sigma' uncertainties (the square root of the

main diagonals) are presented here. For comparison, the uncertainties of the initial

covariance matrix for the co-circular case are shown in Table 4.4. The format used

in all remaining tables to print the twenty-six one sigma uncertainties is as follows:

7 £ Z .i

e t e , e ,, it, e , e t ,

ar'c, ar c, 8) ,, vcx 7Yc 6Vc,

8r t. 8r, l r, , 8 Vt,Vl 5vtZ

8t c 5t$ ]

The order is as defined in Table 2.1, with a position and velocity perturbation vector

on each row.

Table 4.5 compares the results for a co-circular case in which the initial

covariance matrix was scaled by a factor of one sixteenth. As hoped, both

simulation components are producing, essentially, the same condition covariance

matrices. Also noteworthy, is the relative sizes of the perturbations. The errors

stayed about the same size as the initial errors, %khile the dispersions grew

dramatically. This is due to the time slip. The average time slip (about 17 seconds,
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Table 4.3 Elevation Angle Accuracy Using Analytic Method

Initial Error St. (s) Elevation Error (deg)

_______________________ _______ I Analytic J Kepler

Sr,, = 10 ft 0.193 -1.2E-6 -2.4E-7

8Y= 10 ft 0.804 -2.0E-5 -8.9E-6

S = 0. 1 ft/s 4.573 -9.2E-4 -5.9E-4

8 = 0. 1 ft/s -4.602 -5.9E-4 -2.3E-4

8rc = [1, -3, 0]
S,= [-0.1, 0.3, 0]
Sr [-1, 4, 0]-769 -2.3E-3 -1.4E-3
V,= [-0.04, -0.09, 0] -. 9

Stc = 1E-8
St, = 0 _ _ _ _ _ _ _ _ _ _

Table 4.4 Initial Covariance Matrix - Co-Circular, Covariance Scale Factor 1, Inertial
Frame

One Sigma Uncertainties From Mlain Diagonal:
1.52061E+03 6.50703E+02 1.08451E+03 6.47216E-01 1.5515713+00 6.18000E-O1
9.43578E+02 1.78773E+02 1.0311111i+03 2.41615E-01 1.1141213+00 6.68000E-O1
1.52061E3+03 6.50703E3+02 1.08451E3+03 6.472161>01 1.55157E3+00 6.18000 E- 01
9.43578E3+02 1.78773E3+02 1.03111 E+03 2.41615E-01 1.1 1412E3+00 6.680001-01O
0.00000 0.00000
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Table 4.5 Comparison of Final Condition Covariance Matrices - Co-Circular,
Elevation Type 1, Covariance Scale Factor 0.0625, Inertial Frame

One Sigma Uncertainties From Main Diagonal:

ANALYrlC:
2.39691E+02 7.69378E+02 1.66196E3+02 8.00467E3-01 2.25876E3-01 2.89095E3-01
2.4165613+01 2.86411E+02 1.12794E3+02 3.1238513-01 2.24063E3-02 3.11802E3-01
2.39691E3+02 4.38899E+0-5 1.66196E3±02 5.00695E3±02 2.2587613-01 2.8909513-01
2.55629E+03 4.38855E+05 1.12794E3±02 4.9852513+02 2.89725E3±00 3,11802E3-01
1.74177E+01 1.74177E+01

MONTE CARLO:
2.41163E3+02 7.6930]E+02 1.66159E3+02 8.00686E-01 2.25955E3-01 2.891231E-01
2.47189E3+01 2.86351E3+02 1.12647E3+02 3.12309E3-01 2.3377713-02 3.11871E3-01
7.31356E3+03 4.36274E3+05 1.66004E3+02 4.97700E3+02 8.371511E+00 2.892319E3-0 1
7.9517313-+03 4.362311--+05 1.12990f13+02 4.95544E3+02 9.03020E3+00 3.11710E3-01
1.73170E3+01 1.73170E3+01

Table 4.6 Comparison of Final ConditIon Covariance, Matrices -Co-Elliptic,
Elevation Type 3, Covariance Scale Factor 0.01, Inertial Frame

One Sigma Uncertainties From Main Diagonal:

ANALX1TIC:
4.91245E3+03 4.2)8278E3+03 5.9201313+02 3.6558613-01 2.28709E3+00 2.82168E3-01
3.65232E3+03 3.15071E3+03 6.72483E3+02 1.4954613-01 1.68834E3+00 3.00228E3-01
1.1358913+06 9.09298E3+05 5.92013E3+02 3.65586E3-01 5.36496E3+02 2.82168E3-01
1. 13830E+06 9.045271E+05 6.72483E3+02 2.9174713+00 5.3079213+02 3.00228 1- -01
6.0548713-+01 6.05487E3+01

MONTE CARLO:
4.909781-1+03 4.28722E3+03 5.9239013+02 3.7236113-01 2.2919613 +00 2.8224913-01
3.650S013±03 3.15846E +03 6.7171613+02 1.545841--01 1.6956213-+00 3.008851-01O
1.133061-±06 9.061521--+05 5.923721'+02 1.3482913-+01 5 14592E3+02 2.822431-01
1.135481-"+06 9.014151--+05 6.7325713+02 1.34324E3+01 5.2892213-+02 3.0013113-01
6.0424 11F±01 6.0424113-+01
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in this case) shows itself in the dispersions, while the errors are unaffected, as stated

in the development.

The co-elliptic case, presented in Table 4.6, validates the development using

the elevation angle as measured from the chaser's velocity vector. Again, Analytic

and Monte Carlo produce, essentially, the same results. In this case, the elevation

type makes a significant difference. As shown, with elevation type 3, the average

time slip is 60.5 seconds. When the same case, with the same covariance scale

factor, was run with the elevation defined off the local horizontal (elevation type 1,

not shown), the average time slip required was only 24.1 seconds (As mentioned in

the previous section, the requested elevation angle was varied for each elevation

type so the nominal final positions of both craft would be the same).

The final method of validation looked at the average elevation error. The

sensitivity vector and the final condition transition matrix are used to calculate a

scalar variation in the elevation angle:

XAc- T AcxAc)A (4.1)k T = k ckA
=k6A CAA

Of course, this value is guaranteed to be (and is) zero using the analytic method,

because

k¢T =D 0 x T(4.2)

but the fact it is near zero when using Monte Carlo's output validates both the

sensitivity vector derivation and the Monte Carlo method. Table 4.7 summarizes the

average elevation error (the square root of equation (4.1)) for several test cases.
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Table 4.7 Estimated Average Elevation Angle Error Calculated From the Condition
Covariance Matrix

Orbit Elevation Covarlance Average Elevation Error
Type Scale Factor A ayit al

__________ __________ ___________ Analytic MonteCarlo_

co-circular 1 25 2E-5 2.9

4 7E-7 0.6

1 2E-6 0.2

6.25E-2 IE-6 IE-2
co-elliptic 1 1E-2 2E-7 1E-2

3 1E-2 3E-6 4E-2

4.3 The Linearity Assumption

The assumption of linear motion at the terminal point cannot be taken for

granted, because, obviously, it must break down somewhere. For 'small' enough

perturbations in time, though, a linear region must exist. To bring out the effect of

the linearity assumption, the individual twenty-six dimensional perturbation vectors,

which were propagated to the condition by Monte Carlo and Analytic, were

transformed to a local vertical, curvilinear (LVC) coordinate system (see Figure 4.2).

These transformed vectors were then used to compute a new LVC condition

covariance matrix. By separating the downrange (X,,) and altitude (Z,.)

perturbations, a vehicle, which has been propagated linearly, can be seen 'gaining

altitude' above the actual curved flight path. The linearity assumption is, therefore,
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direction geocentric radius
of mot vector of vehicle

z lvc X ivc

orbital plane - Yvc

NAME: Local vertical, curvilinear coordinate system.

ORIGIN: Nominal vehicle center of mass.

ORIENTATION: The X,-Z,,, plane is the instantaneous orbit plane of the nominal
trajectory. The 7,., axis lies along the geocentric radius vector to
the vehicle and is positive toward the center of the earth,
measuring radial distance from the nominal flight path.

The X, axis curves along the vehicle's path of flight,
perrendicular to the Z, axis, and is positive in the direction of
motion, measuring downrange distance along the flight path.

The Y axis is normal to the orbit plane and completes the right-

handed orthogonal system.

CIIARACI71.RIS'ICS: Right-handed, curvilinear, rotating coordinate system.

Figure 4.2 N,,minal Vehicle-Centered, Local Vertical, Curvilinear Coordinaxe System
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seen to introduce an altitude dispersion that is not really there. For small time slips,

this added dispersion is also small, but for larger slips, the dispersion gets to be

excessive.

The co-circular orbit case, with two different sized initial covariance matrices

is presented to show this effect. In Table 4.8, the same case and covariance scale

factor as for Table 4.5 are used. Note the altitude dispersions for the analytic

component are larger than for Monte Carlo. For Monte Carlo, the full effect of the

time slip is seen in the downrange dispersions. For Table 4.9, the covariance scale

factor is increased to 1, and the effect is more pronounced. The altitude dispersion

has grown to about one tenth the downrange dispersion in the analytic covariance

matrix.

Next, with a good knowledge of the direct effect of the linearity assumption,

it is necessary to measure the accuracy of the analytic component in keeping the

elevation error small as the size of the initial perturbations are increased. A more

direct measure of the actual estimated average elevation error was obtained by

calculating the elevation angle of the final navigation states produced by the

Analytic and Monte Carlo components from each initial perturbation vector and

then calculating how this varied from the nominal. Table 4.10 presents this result

for the same cases presented in Table 4.7. Note that when the elevation error is

calculated by this method, Monte Carlo is very consistent (reflecting the elevation

tolerance required of the iterative elevation angle search procedure), but Analytic

starts to break down with very large perturbations. The effect of large perturbations

on the ability of the sensitivity vector to calculate an accurate elevation angle

variance can now be recognized in Table 4.7, too.

Another measure of the accuracy of the analytic method is its ability to find

the correct time slip. Table 4.11 shows the one sigma time slips obtained by
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Table 4.8 Comparison of Final Condition Covariance Matrices - Co-Circular,
Elevation Type 1, Covariance Scale Factor 0.0625, LVC Frame

One Sigma Uncertainties From Main Diagonal:

ANALYFIC:
7.69021E+02 1.66196E+02 2.39948E3+02 4.97599E-01 2.890951-01O 1.137771>01O
2.86382E3+02 1.12794E+02 2.38315E3+01 4.96460E3-02 3.11802E-01 3.70283E3-02
4.38733E+05 1.66196E3+02 7-38400E+03 4.97534E3-01 2.8909513-01 1.14011E3-01
4.3869913+05 1 .1279413+02 7.34485E+03 4.9636613-02 3.1 1802E-01 3.70405E-02
1.74177E3+01 1.74177E+01

MONTE CARLO:
7.6980113+02 1.66159E3+02 2.395601-.+02 4.97720E3-01 2.89123E3-01 1.128981--01
2.86489E3+02 1.12647E+02 2.30692E3+01 4.96883E3-02 3.11871E-01 3.70330E-02
4.36355E3+05 1.66004E3+02 2.39518E+02 4.97626E-01 2.89239E3-01 1.129621-01
4.36324E+05 1.12990E3+02 2.30616E+01 4.96737E3-02 3.1171013-01 3.7035013--02
1.73170E3+01 1.73170E3+01

Table 4.9 Comparison of Final Condition Covariance Matrices -Co-Circular,

Elevation Type 1, Covariance Scale Factor 1, LVC Frame

One Sigma Uncertainties From Main Diagonal:

ANALYTIC:
3.047241'+03 6.647841E+02 9.9984813.+02 1.9703413+00 1.15638E3+00 4.98496E3-01
1. 13 879E3+ 03 4.51177E3+02 1.3012213+02 1.9801713-01 1.24721E3+00 1.48148E3-01
1.74521E3+06 6.6478413+02 1.17176E+05 1.96838E3+00 1.1563811+00 5.03737E3-01
1.745141-+06 4.5117713+02 1.16779E+05 1.9789013-01 1.2472113+00 1.4828613-01
6.9671013+01 6.96710E3+01

MIONTE CARLO:
3.0880713'+03 6.6672913+02 9.5440613-+02 1.9823013 +00 1.15.101+00 4.57677E3-01
1. 145 681+03 4.53618f13+02 9.27440E3+01 1.99852F3-01 1.24606f3+00 1.47775E3-01
1.7533113'+06 6.64571E3+02 9.53523E+02 1.98033134 00 1.1565513+00 4.5900113-01
1,753181:+06 4.59074E3+02 9.27005E+01 1.998031- -01 1.24348E3+00 1.47745F3-01
6.9581013+01 6.9581013+01
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Table 4.10 Estimated Average Elevation Angle Error Calculated From the Error
Vectors

Orbit Elevation Covariance Average Elevation Error
Type Scale Factor TtrAnalytic Monte Carlo

co-circular 1 25 2.7 4E-3

4 0.6 4E-3

1 0.2 3E-3

6.25E-2 1E-2 4E-3

co-elliptic 1 IE-2 2E-2 5E-3

3 IE-2 4E-2 3E-3

Table 4.11 Average Time Slip Comparison

Orbit Elevation Covariance Average Time Slip Average
Type Scale Time Slip

Factor Analytic Monte Carlo Difference

co-circular 1 25 348 335 13

4 139.3 138.7 0.7

1 69.7 69.6 0.1

6.25E-2 17.4 17.3 0.1

co-elliptic I IE-2 24.1 24.3 -0.2

3 1E-2 60.5 60.4 0.1
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Analytic and Monte Carlo, and their difference. The average time slip obtained

from Analytic starts to diverge from that of Monte Carlo as the perturbations grow.

Both measures, the elevation angle error and the average time slip difference, give

a feel for what 'small' perturbations are for these orbits.

Unfortunately, the definition of 'small' will change for each rendezvous

scenario. Factors which affect how quickly altitude errors build up, and, thus, how

large an acceptable time slip can be, are the curvature of the actual flight path and

the speed of the vehicle. This means the size of the orbit and, for elliptic orbits, the

vehicle's position in the orbit will affect the definition of small. Many factors will

also affect how quickly the condition constraint is changing, and, therefore, the size

of the time slip required. In the final analysis, though, the size of the time slips

required is primarily a function of how well the problem is defined. It may well be

the case that the analytic method developed here will not be applicable to certain

ill-defined problems requiring large time slips which violate the region of linearity.

4.4 Visualizing Perturbations at a Maneuver Condition

Trying to think in twenty-six dimensions is a little difficult. This makes
'seeing' what the perturbations at a maneuver condition look like equally difficult.

Any effort to reduce the dimensionality of the problem is a great help. The LVC

frame was useful to show that the perturbations were really about the same size, but

just spread up and down range from nominal. Another transformation to a relative,

line of sight (LOS) coordinate system is also helpful (see Figure 4.3 for a definition).

By going to a relative frame, which expresses the chaser's position relative to the

target, the dimensionality is cut to twelve (there is no relative time difference
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Zr

X los

zlos

t 
re

Ylos

NAME: Line of sight coordinate system.

ORIGIN: Chaser vehicle center of mass.

ORIENTATION: The X1 o.-Y1,, plane is the instantaneous plane spanned by the
geocentric radius vectors of the chaser and target vehicles. The
X, axis lies along the relative position vector and is positive
toward the target vehicle. This is the line of sight from the chaser
to the target.

The 7Z,, axis is normal to the X1 ,-Y1 ,, plane, and is positive in the
direction of a vector which is the vector cross product of the
chaser and target geocentric radius vectors.

The Y,, axis is perpendicular to the relative position vector and
completes the right-handed orthogonal system.

CIIARACILRIS'TlCS: Right-handed, Cartesian, rotating coordinate system. This system
is designed so the elevation angle, as defined in equation (2.18),
will lie in the X1,-Y1 , plane. A slightly different line of sight
frame is used with cach elevation angle definition to kccp the
angle in this plane.

Figure 4.3 Line of Sight Coordinate System
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between vehicles). Neglecting velocity errors and dispersions, we can then look at

estimated position dispersions and true position dispersions separately, and the

problem is down to three dimensions. The former shows how the navigation

position estimate is dispersed from the nominal, and the latter shows the true

position dispersions from the nominal.

Intuition would suggest that when the line of sight is held constant relative

to the local horizontal or the velocity vector, that the error perpendicular to the line

of sight and in the relative plane (Y,.) would be zero when the condition is

achieved. The error vector is said to 'collapse' along the line of sight. This is

impossible to see in an inertial frame, though, because the local horizontal and the

velocity vector, and thus the LOS frame, are rotating with time. And because time

is allowed to slip, the times associated with the nominal and perturbed states are

different. Figure 4.4 illustrates how perturbing a state from the nominal with a time

slip affects the LOS frame, and, therefore, shows that when time is allowed to slip,

the LOS frame for the perturbed state must also be rotated to compensate.

An inertial, time varying perturbation vector or covariance matrix cannot,

then, be simply rotated to the LOS frame. In fact, a different perturbation vector

is needed. In an inertial frame,

8Ar = Ar - Ar,, (4.3)

but to obtain a time varying, LOS perturbation vector, the LOS frame for the

perturbed state must, first, be rotated to account for the time slip:

8Ar. = A(& t)Arr - (4.4)

where A(Otf) is a rotation matrix,
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Figure 4.4 Effect of a Time Slip on Rotating Line of Sight Frame
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cos(w 8tf) sin(w 8 if) 0'

A(w 8tf) = -sin(w 8tf) cos(w 8tf) 0 (4.5)

0 0 1

and (a is the angular velocity of the chaser orbit. This is the only rotation needed

when the line of sight is held constant relative to the local horizontal. When it is

held constant relative to the velocity vector, an additional rotation must be made to

account for the angular rotation of the velocity vector with respect to the local

horizontal. This is accomplished by substituting (w + -) for w in equation (4.5),

where y is the time rate of change of the flight path angle:

dy _ h-(v - rv2) (4.6)
t r3 v 2

where I is the gravitational parameter. These new LOS perturbation vectors, which

were calculated using the twenty-six dimensional inertial perturbation vectors

propagated to the condition by Analytic and Monte Carlo, were then used to

compute a new LOS condition covariance matrix.

Often, in covariance analysis, the question is, what happens to the true state

when maneuvers are made based on the navigation estimate of the state. In this

case, the navigation state is constrained to a condition, but the true state is not. The

transformation to the LOS coordinate system lets us see the effect. In Table 4.12,

the co-circular orbits case with a 1/16 covariance scale factor is presented in the

LOS frame. The estimated position dispersion and true position dispersion

covariance matrices, as calculated from the inertial pertuibation vectors produced

by Analytic and Monte Carlo, are shown, as well as their associated one sigma

uncertainties. As suggested by intuition, the estimated position dispersion
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Table 4.12 Comparison of Final Condition Covariance Matrices - Co-Circular,
Elevation Type 1, Covariance Scale Factor 0.0625, LOS Frame

RELATIVE ANALYTIC ESTIMATED POSITION DISPERSION COVARIANCE MATRIX:
6.261913020919E+05 5.347329338515E+03 -2.540297561973E+02
5.347329338515Ei+03 7.031911858011 E+02 -6.229824767212E+01

- 2.540297561 973E +02 - 6.22982476721 2E +01 8.0687206299731:+04
One Sigma Uncertainties From Main Diagonal:

7.913225019497E+02 2.651775227656E+01 2.840549353553E+02

RELATIVE MIONTE CARLO ESTIMATED POSITION DISPERSION COVARIANCE MATRIX:
6.138037833267E+05 1.444583 188955E+03 3.459318429782E3+02
1.444583188955E3+03 8.276183539467E3+01 -3.999286987816E3+01
3.459318429782E3+ 02 - 3.999286987816E3+01 8.062224383743E3+04

One Sigma Uncertainties From Main Diagonal:
7.834563059461E3+02 9.097353208196E+ 00 2.839405639169E3+02

RELATIVE ANALYTIC TRUE POSITION DISPERSION COVARIANCE MATRIX:
1.644869483409E3+06 6.355364742566E3+05 - 2.929294122991 E+02
6.355364742566E+05 3.020465862788E3+05 - 2.364784855042E +02

- 2.929294122991 E +02 -2.364784855042E3+02 4.034360314986E3+04
One Sigma Uncertainties From Main Diagonal:

1.282524652164E3+03 5.495876511338E+02 2.008571710193E3+02

RELATIVE MONTE CARLO TRUE POSITION DISPERSION COVARIANCE MIATRIX:
1.626745360030E3+06 6.276790262117E3+05 4.2115911508651:+02
6.276790262117E3+05 2.97918271337613+05 2.45205826979413-+02
4.211591150865E3+02 2.452058269794E3+02 4.0368879996811- +04

One Sigma Uncertainties From Main Diagonal:
1.2754392812'011 + 03 5.458 188997622E+ 02 2.0092008360741-'+ 02
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(navigation's deviation from nominal) perpendicular to the line of sight and in the

relative plane (Y,) is very small for both Analytic and Monte Carlo, but the true

position dispersion (true deviation from nominal), in the same direction, is not.

Table 4.13 reveals the same effect for the co-elliptic case with a 0.01 covariance

scale factor. It really is easier to 'see' what is happening with the problem reduced

to three dimensions.

The effect on the true state caused by performing maneuvers based on the

estimated state can also be seen by comparing the average elevation angle error

calculated from the estimated state with the average elevation angle dispersion

calculated from the true state. The true average elevation dispersion can be

calculated in two ways, just as the estimated average error was. Table 4.7 showed

the estimated average elevation error as calculated with the sensitivity vector and the

condition covariance matrix using equation (4.1). The true average elevation

dispersion can also be calculated using this equation by substituting a sensitivity

vector which reflects only the sensitivity of the elevation angle to dispersions. This

is accomplished by nulling the first twelve components of kA. The resulting true

average elevation dispersions are presented in Table 4.14.

The second method of calculating the true average elevation dispersion uses

the variance from nominal of the true elevation angle as calculated from the final

true states produced by the Analytic and Monte Carlo components. This is similar

to the method used to find the estimated average elevation errors in Table 4 10.

This second method is not subject to the linearity problems that the sensitivity vector

encounters for large perturbations. The true average elevation errors calculated by

this method are shown in Table 4.15.
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Table 4.13 Comparison of Final Condition Covariance Matrices - Co-Elliptic,
Elevation Type 3, Covariance Scale Factor 0.01, LOS Frame

RELATIVE ANALYTIC ESTIMATED POSITION DISPERSION COVARIANCE MATRIX:
4.282563658181E+07 -9.308798138141E+04 2.023131415154E+04

-9.30879813814 1E+ 04 1 .696932409177E +04 -6.360480197909E+03
2.023131415 154E+04 -6.360480197909E+03 1.605425422832E+06

One Sigma Uncertainties From Main Diagonal:
6.544129933 1391-+03 1.302663582502E+ 02 1 .267053835806E +03

RELATIVE MONTE CARLO ESTIMATED POSITION DISPERSION COVARIANCE MATRIX:
4.291740970 19013+07 -9.38949435' I188E+04 2.863330763954E +04

-9.389494357188E+04 5.0051 12964139E+04 -8. 108242958814E+03
2.863330763954E+04 -8. 108242958814E+03 1.601 982277946E+06

One Sigma Uncertainties From Main Diagonal:
6.551 138046317E+03 2.237210978906E+02 1.265694385682E+03

RELATIVE ANALYTIC TRUE POSITON DISPERSION COVARIANCE MATRIX:
4.552474790435E+07 8.876379130440E+06 9.790509630079E+03
8.876379130440E+06 3.320007211203E+06 5,104268670316E+03
9.790509630079E+03 5.104268670316E+03 8.0271271 14158E+05

One Sigma Uncertainties From Main Diagonal:
6.747202968961 E +03 1.822088694659E+ 03 8.959423594271 E +02

RELATIVE MIONTE CARLO TOTAL POSITION DISPERSION COVARIANCE MATRIX:
4.540100903208E+07 8.814150151238E+06 4.923212318513E+03
8.814150151238E+06 3.338515525613E+06 -9.839076217119E+03
4.923212318513E+03 -9.839076217119E+03 8,051403937792E+05

One Sigma Uncertainties From Main Diagonal:
6.738027087514FE +03 1.827 160508990E+ 03 8.972961572297E +02
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Table 4.14 True Average Elevation Angle Dispersion Calculated From the
Condition Covariance Matrix

Orbit Elevation Covarlance Average Elevation Error
Type Scale Factor Analytic Monte Carlo

co-circular 1 25 4.4 6.8

4 1.8 2.1

1 0.9 0.9

6.25E-2 0.2 0.2

co-elliptic 1 1E-2 0.3 0.3

3 1E-2 0.3 0.3

Table 4.15 True Average Elevation Angle Dispersion Calculated From the Error
Vectors

Orbit Elevation Covariance Average Elevation Error
Te Scale Factor Analytic Monte Carlo

co-circular 1 25 5.2 5.1

4 1.8 1.8

1 0.9 0.9

6.25E-2 0.2 0.2

co-elliptic 1 1E-2 0.3 0.3

3 1E-2 0.3 0.3
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CHAPTER 5

CONCLUSION

Future missions to Mars will stretch current theories and practices in mission

planning and operations well beyond those used to go to the moon. The goal of this

study has been to develop a method for propagating a covariance matrix to a

maneuver condition to be used in linear covariance analysis for planning the

rendezvous phase of these space missions. With the generalized formulation of a

condition transition matrix, an analytic method of propagating an augmented

covariance matrix to any scalar, terminal maneuver condition has been presznted.

This augmented covaiiance matrix includes navigation errors, dispersions, and time

errors for both the chaser and target craft. First, the method was analytically

developed, then validated by comparison to a stochastic Monte Carlo simulation for

the case of several elevation angle conditions which might be used to trigger an

initial rendezvous burn. The key assumption of linearity at the terminal point was

substantiated with the same simulation. This chapter will summarize the key results

of the simulation in Section 5.1, and suggest some future, related areas for research

in Section 5.2.
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5.1 Summary of Results

The primary result of this study is a valid analytic method of propagating to

a condition. Three important conclusions can be drawn from the results of the

comparison of this analytic method with a stochastic Monte Carlo simulation:

" The condition transition matrix, developed in Chapter 2, is a valid

analytic means of propagating a covariance matrix to a maneuver

condition.

" The assumption of linearity at the terminal point is valid for 'small'

initial perturbations.

* For an elevation angle condition, the final estimated state errors at the

condition do collapse along the line of sight between the spacecraft.

This section will expand on these three conclusions.

The analytic result (the propagation of an initial augmented covariance

matrix to a maneuver condition using a variable time of flight condition transition

matrix) was validated, first, by accurately propagating deterministic error vectors to

the desired condition. The elevation angle was held constant, and the final state was

verified with a separate Kepler propagation to the same perturbed time. The

anaiytic method was then shown to produce the same final condition covariance

matrix as that of the stochastic Monte Carlo simulation. In particular, the result was

shown for a co-circular orbital case vith the elevation angle referenced to the local

horizontal, and for a co-elliptic case with the elevation angle referenced to the

chaser's velocity vector. Finally, the variation in the elevation ang!c was calculated

from the final condition co.ariance matrices. This vaiiation was shown to be small,
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confirming that the final state had been constrained to the desired condition.

The linearity assumption was validated for 'small' initial perturbations. The

definition of small was investigated, and as stated, will be unique to the orbits of the

rendezvousing spacecraft. Using the co-circular case and a transformation to a local

vertical, curvilinear coordinate system, the effect of the linearity assumption was

shown to be an added altitude error in the final dispersions of both craft. Then, by

scaling the initial covariance mctrix, the linearity assumption was tested for various

sized errors. The analytic method proved to accurately calculate the necessary time

slip and achieve the desired elevation angle for an initial covariance matrix

representing the uncertainty of a ground uplinked shuttle and target state. When

these uncertainties were doubled (with a covariance scale factor of 4), the time slip

still agreed with the Monte Carlo simulation to within 0.7 seconds, and the average

elevation angle error was held to 0.6 degrees. Only for much larger perturbations

(covariance scale factor 25), did the linearity assumption start to break down.

A different tr,-,nsformation, to a rotating, line of sight coordinate system, was

necessary to show that, when the elevation angle is constrained, the total

perturbation perpendicular to the line of sight between the craft will be small. It

was shown that, oecause the LOS frame rotates with time, and time is allowed to

vary, a different perturbation vector was needed to account for the rotated LOS

frame of the per':,,rbed state relative to the LOS frame of the nominal state. Once

this LOS perturbatior. .. ,--or was calculated, its resulting covariance matrix did

reveal that the perturbations had collapsed along the line of sight.

The condition transition matrix, developed in Chapter 2, will analytically

propagate a covariance matrix to a maneuver condition:. This method will piove to

be an effective, time: ving ool for the covariance analysis neccssary to the planning

of the rendezvous phase of any future space mission.
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5.2 Future Research

As is always the case, there is more work yet to be done than has already

been accomplished. Three areas of future research, directly related to the condition

transition matrix, suggest themselves.

The definition of what is small, as it relates to the linearity assumption, was

investigated for two very general rendezvous orbit profiles, one co-circular and the

other co-elliptic. Because the size, shape, position, and relative size and orientation

of the rendezvous orbits all influence the altitude error and affect how fast the

elevation angle is changing, and, therefore, how large the perturbations can be

before the linearity assumption is invalid, more work is needed to define what is

small for specific rendezvous scenarios.

If it, then, proves that the size of the anticipated errors and the planned

rendezvous profile will necessitate time slips beyond the region of linearity at the

terminal point, work might be done to expand this region of linearity. One

possibility is to include second order effects in the condition transition matrix.

Another possibility would be to go to a classical element formulation (or a more

modern non-singular element formulation) which avoids these linearity problems.

Unfortunately, element formulations are difficult to deal with, both algorithmically

and computationally. However, for some problems, it may be necessary.

The final direct area of research invc! -s the transformations to the LVC and

LOS coordinate systems. Both transformations are non-linear, and were, therefore,

performed on the individual perturbation vectors after they were propagated by

Analytic or Monte Carlo. Covariance matrices were then calculated from these
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transformed vectors. An Analytic method for directly transforming the inertial

condition covariance matrix should be possible and would further increase the

flexibility and value of the condition transition matrix.

Not mentioned yet, are the areas which go beyond, and were listed as

motivation for, this study. Armed with an analytic method of propagating a

covariance matrix to a maneuver condition, questions related to the Mars highly

elliptic rendezvous problem can be more easily addressed. Some of these questions

are: the size and shape of the catch-up orbit, where in the orbit the rendezvous

should occur and where it should be initiated, what condition to trigger the intercept

burn on, the geometry of the final approach to the target, and how to make the

rendezvous tolerant to navigation uncertainties. There is, indeed, more work yet to

be done.
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APPENDIX A

This Appendix contains the results, and a few helpful steps, of differentiating

the four elevation angle definitions of Chapter 2 to obtain the elements of kT, the

sensitivity vector.

A.1 Elevation Type 1

For the angle between the line of sight and the local horizontal,

= ArT r, (A.1)
jArl jr,

two good first steps are:

A/ 2 = ArTAr

Ar = rt r- rr

Ar Ar _ ad Ar = 2Ar T  (A.2)

o Or, aAr _ aAr _ ArT

ar, Or, Arj
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and the result:

T_ T(A4

a4~ _ r,&rz A~cA (A.3)
ar

OTse (A.4)
33

Arrc
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A.2 Elevation Type 2

When correcting for non-co-planar orbits,

sin 42 =rTr
= V Ar - -1(,T hd

h" (A.7)
ArTr,

r[Ar2 - (rgT hc)2]

a few more helpful steps are needed [1]:

o -v v, V

h €  vxr S,v where S, = v. 0 =S _SrT (A.8)

-v V, 0.

ah+ rh,) T = _Tr,)Tah- = Th =rT S, = ",Trt (A.9)

= (Sr,)T = (vxrt)T

= h ,h,

2hC -h 2he - = -2h S (A. 10)

(vr,, vc, rvcv

C C Ch -(sTh)T ( ) 2 T T T
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Similar results are found in ref. [11 for the partials with respect to the velocity

vector.

With a few more steps, the desired partials are:

4 2  [ + (Ar Tr,)(r, + h2)]- Ar2(rr,)lrT
O, % (r, h,) [r,hr 2

2 1 1 1 V , I) [r2 "j

+r2 (ArTr) -r T ]AT (A.I)

2

re T rIT rTr,) 2 ] h2

___ = a2~- 2(A r )(r h ,) (r (rv)r- r h

a42 -ar2[[Ar2 - (rh)]T- (Arr,)Ar - ITr\hL h] (A.13)

where

42~ ~ ~~X r! TT T2=] 2 T

Sehe

E r3Ar2 s e(rth)2]i (A.14)
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A.3 Elevation Type 3

The remaining partials for the angle between the line of sight and the velocity

vector are derived using the same tools, and are presented without comment.

ArT V (A.15)

IArlIvt

yields

- = a 3v2[(ArTv)Ar T 
- Arv (A.16)

-! = a3 Ar2 v2ArT - (ArTv )vc (A. 17)

=cvFA,,A~T
-'r Cc x

..here

- CSC 3
M3 - 3 (A.19)

Ar vC
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A.4 Elevation Type 4

=Ar T V

Ir - (A.20)

v Ar 2 1 2 (rT h)212

leads to

844 21 rC /TL'TX2T T:

ar, r C t 4 I J

+ I[2+ (ArT v,) (rTI'v,)](rT h )2  
- r T2JV T (A.21)

- 2 (Ar T V)(r, Thc) (rX V) T}
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__4 v c{ (r h )2r TV) (,QrT

+ v4A[& r +(he )]~ (A.22)

+~ ~ 2)~~)1h - r h Ar~jc

' ~5(Ar Tv) (r h,) (r, Xr)T}

__4 2 vIAr 2 1 i(rT h,]V T - (Ar T V)Ar T I i(rTh,)h Ti (A.23)

t IL I

where

at4  v~~2 ~(A.24)
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